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Part | - the scary part

- Topology

- Simplices

- Simplicial complexes
- Filtration

- Persistent homology
- Persistence diagrams



What is topology? Why should | care?

- Study of shapes under continuous deformations.
- No tearing or gluing
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What can you extract from topology?
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Everything is beautiful,
but...



From topology to computational
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Chazal, Frédéric; Glisse, Marc; Labruere, Catherine;
Michel, Bertrand (2013-05-27). "Optimal rates of
convergence for persistence diagrams in Topological
Data Analysis". arXiv:1305.6239 [math.ST].


https://www.wikiwand.com/en/ArXiv
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The basic structure - Simplices

A simplex is just an element from the following list:

Vertice, edge, face, tetrahedron, ...




From simplices to a simplicial complex
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Now computers can work, but how do
you interpret the simplicial complexes?



Extracting topological invariants - Filtration
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Filtration and persistence diagrams - the duo.
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Some interesting applications

- Protein-ligand binding affinity prediction [1]

- Prediction of protein folding stability change upon
mutation [2]

- Topological Data Analysis of Single-cell Hi-C Contact
Maps [3]

[1] Cang Z, Wei G (2017) https://doi.org/10.1371/journal.pcbi. 1005690

[2] Cang Z, Wei G (2017) https://doi.org/10.1093/bioinformatics/btx460
[3] Carriere M., Rabadan R. (2018) arXiv:1812.01360


https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1093/bioinformatics/btx460

Part |l - persistent homology and protein stability

- Measurements of stability
- Computational development of proteins
- Feature extraction using TDA
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Computational steps to obtain a protein

Amino acid sequence Structure Selection Refinement

Final Protein




Predicting stability using physical and statistical terms of protein

Model RMSE Percent Error (%)
Rocklin model 0.419 11.381




Using TDA to extract features from proteins

Ist and 2nd Persistence Diagrams
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PH can be used to predict protein stability

Model RMSE Percent Error (%)
Linear Regression (.5046 13.69
Random Forest I 0.4877 13.24
Random Forest II 0.4874 13:23

GBoost Optimal 0.4770 12.95




Unidimensional cycles of low persistence are important

nic
0

(9,1

H

w

N

-




Carbon and nitroaen atoms are related to stability scores
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Part Il - predicting RMSD

- Rosetta

- Template and simulated proteins

- RMSD: Root Mean Squared Deviation

- Prediction of RMSD: protein features x TDA



The energy landscape
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The ranking of normalized energy

Rank Normalized Energy RMSD
1 0.000 2.233
2 0.023 137
3 0.025 2.395
4 0.057 2.004
5 0.061 2.356




TDA predicts RMSD better than protein terms

Metric Regressor Pixel Size Spread Atom List' Mean Score
R? Neural Network 100 1.0 C —5.780
MSE Neural Network 100 1.0 C 8.299
RMSE Ridge Regression 10 1.2 whole 2.599

Binary Accuracy GBoost 10 0.6 N,O 0.657




TDA predicts RMSD better than protein terms

Metric Regressor Pixel Size Spread Atom List! Mean Score
R? Neural Network 100 1.0 C —5.780
MSE Neural Network 100 1.0 C 8.299
RMSE Ridge Regression 10 152 whole 2.599
Binary Accuracy GBoost 10 0.6 N,O 0.657
Metric Regressor Score
R? Random Forest IT -13.706
MSE Random Forest IT  10.113
RMSE Random Forest II  2.707

Binary Accuracy Ridge Regression  (0.586




Comparison between binary accuracy of regressors

True RMSD

Protein: 1t2i. Metric: binary accuracy

Persistence image
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