Persistent homology applied to protein stability

Carlos Ronchi Marcio Gameiro

University of São Paulo

Part I - the scary part

- Topology
- Simplices
- Simplicial complexes
- Filtration
- Persistent homology
- Persistence diagrams

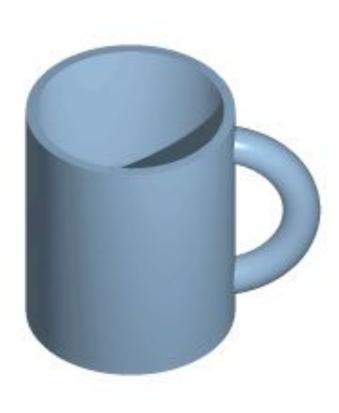
What is topology? Why should I care?

- Study of shapes under continuous deformations.
- No tearing or gluing

What is topology? Why should I care?

- Study of shapes under continuous deformations
- No tearing or gluing

- Abstract nonsense for mathematicians sometimes



- Topological invariants

- Topological invariants
 - Connected components

- Topological invariants
 - Connected components
 - Holes

- Topological invariants
 - Connected components
 - Holes
 - Cavities

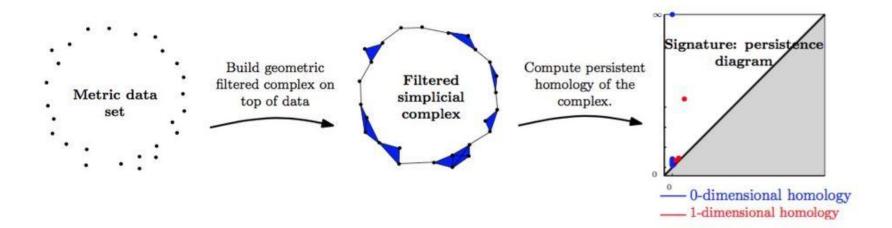
- Topological invariants
 - Connected components
 - Holes
 - Cavities

- Topological invariants
 - Connected components
 - Holes
 - Cavities



Everything is beautiful, but...

From topology to computational topology

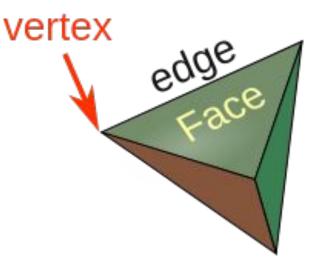


Chazal, Frédéric; Glisse, Marc; Labruère, Catherine; Michel, Bertrand (2013-05-27). "Optimal rates of convergence for persistence diagrams in Topological Data Analysis". arXiv:1305.6239 [math.ST].

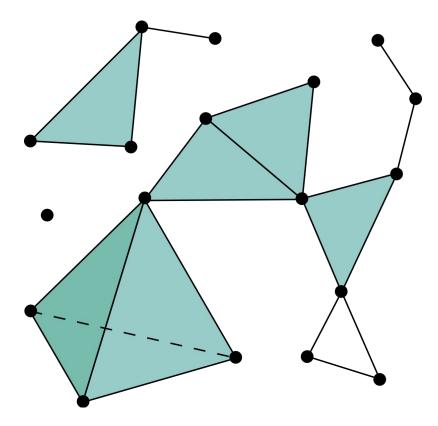
The basic structure - Simplices

A simplex is just an element from the following list:

Vertice, edge, face, tetrahedron, ...

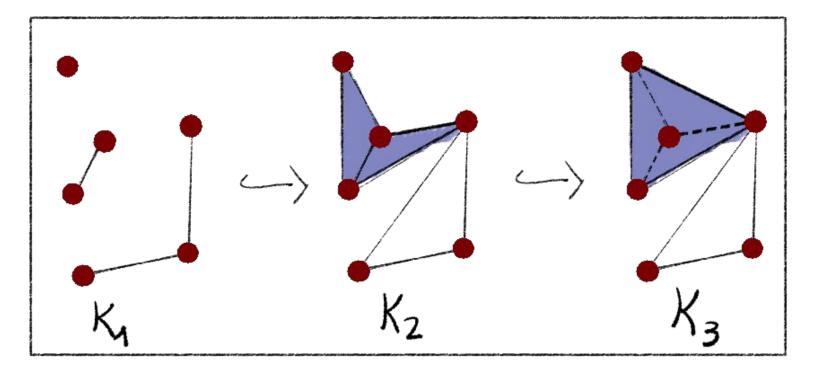


From simplices to a simplicial complex

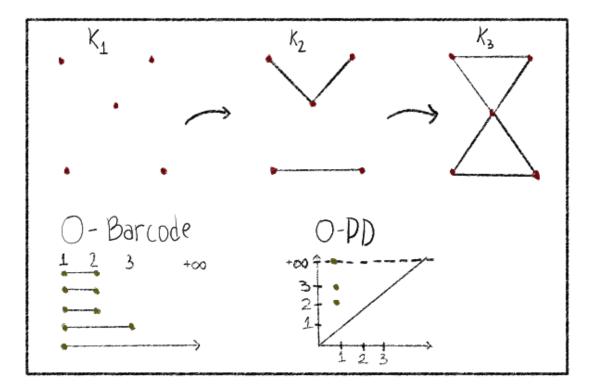


Now computers can work, but how do you interpret the simplicial complexes?

Extracting topological invariants - Filtration



Filtration and persistence diagrams - the duo.



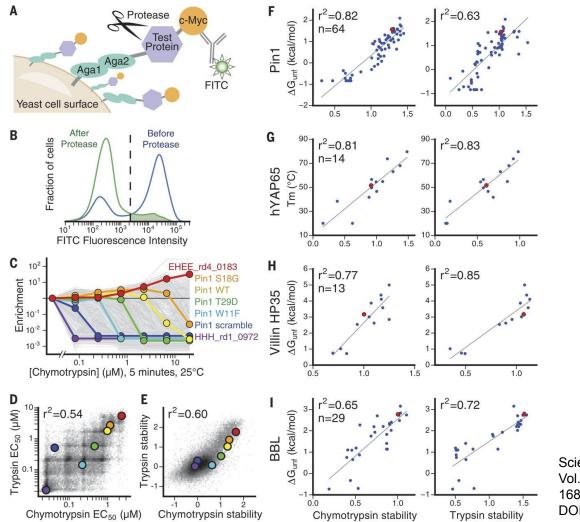
Some interesting applications

- Protein-ligand binding affinity prediction [1]
- Prediction of protein folding stability change upon mutation [2]
- Topological Data Analysis of Single-cell Hi-C Contact Maps [3]

[1] Cang Z, Wei G (2017) <u>https://doi.org/10.1371/journal.pcbi.1005690</u>
[2] Cang Z, Wei G (2017) <u>https://doi.org/10.1093/bioinformatics/btx460</u>
[3] Carriere M., Rabadan R. (2018) arXiv:1812.01360

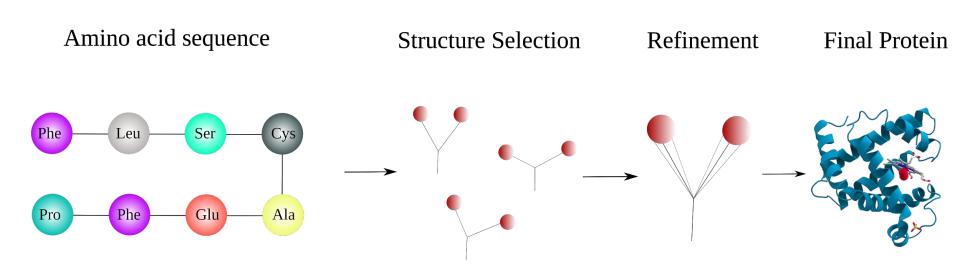
Part II - persistent homology and protein stability

- Measurements of stability
- Computational development of proteins
- Feature extraction using TDA



Science 14 Jul 2017: Vol. 357, Issue 6347, pp. 168-175 DOI: 10.1126/science.aan0693

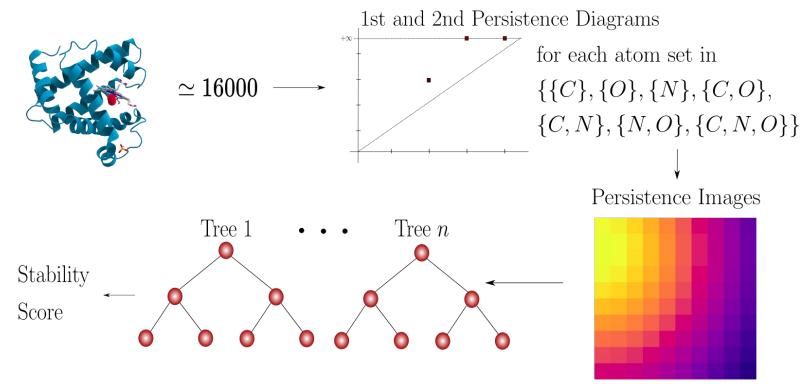
Computational steps to obtain a protein



Predicting stability using physical and statistical terms of protein

Model	RMSE	Percent Error $(\%)$
Rocklin model	0.419	11.381

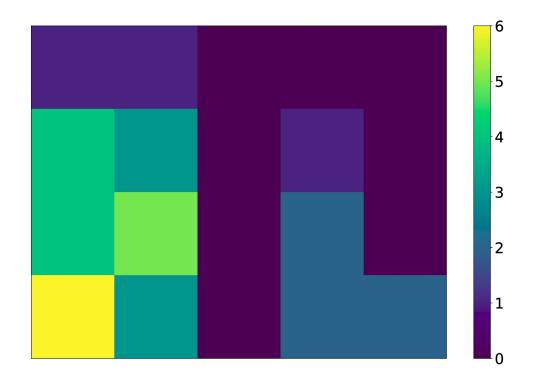
Using TDA to extract features from proteins



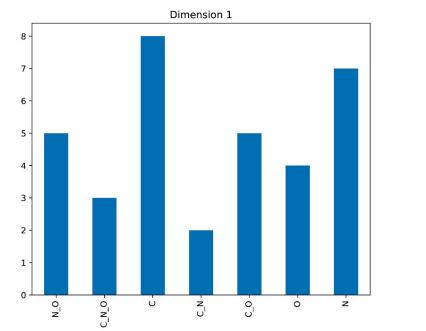
PH can be used to predict protein stability

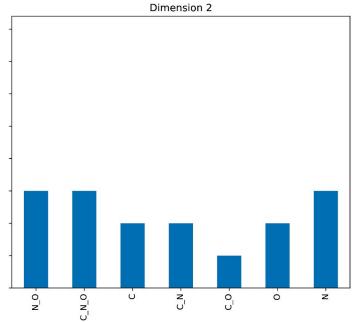
Model	RMSE	Percent Error $(\%)$
Linear Regression	0.5046	13.69
Random Forest I	0.4877	13.24
Random Forest II	0.4874	13.23
GBoost Optimal	0.4770	12.95

Unidimensional cycles of low persistence are important



Carbon and nitrogen atoms are related to stability scores

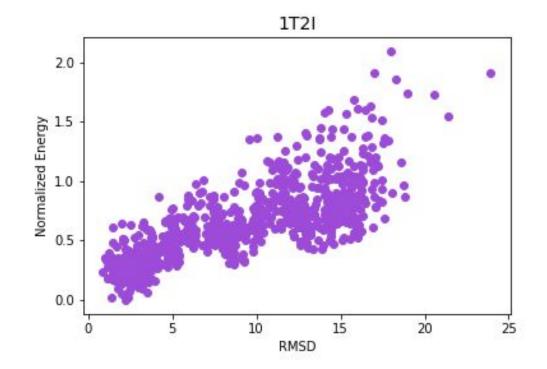




Part III - predicting RMSD

- Rosetta
- Template and simulated proteins
- RMSD: Root Mean Squared Deviation
- Prediction of RMSD: protein features x TDA

The energy landscape



The ranking of normalized energy

Rank	Normalized Energy	RMSD	
1	0.000	2.233	
2	0.023	1.37	
3	0.025	2.395	
4	0.057	2.004	
5	0.061	2.356	

TDA predicts RMSD better than protein terms

Metric	Regressor	Pixel Size	Spread	Atom $List^1$	Mean Score
R^2	Neural Network	100	1.0	С	-5.780
MSE	Neural Network	100	1.0	\mathbf{C}	8.299
RMSE	Ridge Regression	10	1.2	whole	2.599
Binary Accuracy	GBoost	10	0.6	N,O	0.657

TDA predicts RMSD better than protein terms

Metric	Regressor	Pixel Size	Spread	Atom $List^1$	Mean Score
R^2	Neural Network	100	1.0	С	-5.780
MSE	Neural Network	100	1.0	\mathbf{C}	8.299
RMSE	Ridge Regression	10	1.2	whole	2.599
Binary Accuracy	GBoost	10	0.6	N,O	0.657
Metric	Regressor	Score			
R^2	Random Forest II	-13.706			
MSE	Random Forest II	10.113			
RMSE	Random Forest II	2.707			
Binary Accuracy	Ridge Regression	0.586			

Comparison between binary accuracy of regressors

