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Introduction

In recent years data is being produced at an unprecedent rate.
Persistent homology can be used to help in the task of visual-
izing and understanding the shape of data, such as detecting
path connected components, holes and cavities of our data.
Persistent homology has undergone significant progress in re-
cent years. Lately many algorithms have been developed to
increase performance and to better understand the shape of
data. One way to achieve the former is to consider the rep-
resentatives (cycles) of homology groups and persistent ho-
mology filtration and try to optimize them using linear pro-
gramming [2].

Persistent homology

Definition: A persistence module V over the real num-
bers R is defined to be an indexed family of vector spaces
(Vt|t ∈ R) and a doubly-indexed family of linear maps
(vst : Vs → Vt|s ≤ t) which satisfy the composition law
(vst ◦ vrs = vrt) whenever r ≤ s ≤ t, and where vtt is the
identity map on Vt.
Let K be a simplicial complex and K0 ⊂ K1 ⊂ · · · ⊂ Kn = K

a filtration of K, where each Kt is a subcomplex.

Figure 1 Filtration of a simplicial complex

It follows that the vector spaces H(Xt) are finite-dimensional
and for a finite set a1 < · · · < am of "critical values" for the
simplicial complex K all the information of the persistence
module (H(Xt), v

s
t = H(ist)) is encoded in the following fi-

nite diagram:
H(Xa1)→ · · ·→ H(Xam)

Figure 2 0th Persistence diagram of torus

Definition: The above description is the persistence dia-
gram, or barcode of the simplicial complex K.
We may generalize the idea of persistence diagram for de-
composable persistence modules. First we need the following
theorem.
Theorem: Let V be a persistence module over T ⊂ R.
Then V can be decomposed as a direct sum of interval mod-
ules in either of the following situations:

1 T is a finite set;
2 each Vt is finite-dimensional.

On the other hand, there exists a persistence module over Z
(indeed, over the nonpositive integers) which does not admit
an interval decomposition.
Given a decomposable persistence module V indexed over R,

V ∼= ⊕l∈Lk(p∗l , q∗l)

then we define the persistence diagram to be the multiset
dgm(V) = {(pl, ql)|l ∈ L}− ∆

where ∆ is the diagonal in the plane.
Loosely speaking the persistence diagram tells us the topo-
logical properties which are born at the index pl and die at
the index ql.
For further details regarding persistence modules, check [1].

Optimal cycles for persistent
homology

When calculating the persistent homology we generate a set
of representatives from the homology groups, but they are
not as optimal as they could be. Given a cycle z ∈ Zq(X)
we can consider the following problem:

minimize ||x||1

subject to
{
x− ∂q+1y = z

x, y integral
where the 1-norm is defined as ||

∑
αiσi||1 =

∑
|αi|. The

solution z̃ to the above optimization problem is called an
optimal cycle homologous to z.
Let K0 ⊂ K1 ⊂ · · · ⊂ Kn = K be a filtration where only
one simplex is added at each index, we can define the set of
cycles {g1, . . . , gn} ⊂ Hq(Xk) of dimension q that are not a
boundary of a q+ 1-chain in Xk. One can show that the set
{g1, . . . , gn} forms a basis for Hq(Xk). We can optimize the
cycles after they are born using the following procedure.
Algorithm 1: Optimize cycles
Given zj = gj, find an optimal solution to z̃j to

minimize ||x||1

subject to
{
x+ By+

∑
i∈Lq(j),i<j

aiz̃i = zj

where Lq(j) is the set of indices of those cycles gi of dimen-
sion q that are not part of the boundary in Xj. To calcu-
late each gj we initialize the usual persistence algorithm with
gj = σj and procede as usual. It then suffices to show that
this new cycles z̃j form a basis for Hq(Xk).
Theorem: Given the output of the above algorithm,
{[z̃i]|i ∈ Lq(k)} forms a basis for Hq(Xk)
Sketch: first note that from the algorithm [z̃i] = [gi] +∑
h∈Lq(i),h<i

ahz̃h and for those cycles [z̃ ′h] that die before en-

tering Xk we have [g ′h] = 0, where h ′ < h for each h in the
above summand. We then get

[z̃i] = [gi] +
∑

h∈Lq(i),h<i

ch[gh]

and since this is an invertible transformation we can simply
change [gi] for [z̃i].
We now show an example. Consider the following figure.

Figure 3 Homologous cycles z and z̃. (Obtained from [2])

When applying the algorithm for a single cycle z gets opti-
mized to z̃. Although we want to detect both holes. Let
z1 be the outer dashed cycle and z2 the left cycle that goes
around the left hole. When we apply the algorithm for mul-
tiply cycles we get z̃1 to be the right cycle. The idea is when
we add the simplex whose boundary is z2 we fill the hole and
obtain z̃1.

Optimal cycles and machine
learning

A classifier of tourist attractions in Curitiba, Brazil was ob-
tained using a convolution neural network, Alexnet architec-
ture [3]. The proposed classifier achieved an accuracy of
70%. In order to improve the accuracy, we tracked the opti-
mal cycles in some images from specific classes, so we could
train other classifiers with fewer classes.

Figure 4 Touristic attraction images used to calculate the optimal cycles.

For each image we transformed it in a point cloud, where
each pixel corresponded to a point in the plane. Afterwards
we calculated their respective persistence diagram using the
alpha shape filtration and the software OptiPersLP based on
the article [2]. Analyzing each diagram we chose the point
with largest lifespan and looked up their respective optimized
cycle in the plane.

Figure 5 The correspondent persistence diagram for each point cloud
generated from the images.

We then extracted squared patches that did not meet the
holes found with the persistent homology, since they tend to
be more meaningful as they do not contain significant holes
and after that trained three new classifiers. Ensembling the
new classifiers with the older one we improved the accuracy
in 5%.
Table 1 Accuracy of the classifiers using the described method. They
are only two classes for each classifier.

Classes Classifier Accuracy
Garden and Cathedral RBF SVM 68.29%
Garden and Opera RBF SVM 78.04%
Cathedral and Opera RBF SVM 73.17%
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