Função que encontra o pivô da coluna, em outras palavras, o lowest one.
function get_low(column)
biggest_value = 0
for j = 1:(length(column))
if column[j] == 1
biggest_value = j
end
end
return biggest_value
end
Algoritmo para redução
function reduce_matrix(boundary)
nb_simplex = size(boundary)[1]
reduced = boundary
cycles = one(boundary)
for col in 1:nb_simplex
lowest_ones = [get_low(reduced[:,k]) for k in 1:(col-1)]
while sum(get_low(reduced[:,col]) .== lowest_ones) != 0 && get_low(reduced[:,col]) != 0
for k in 1:length(lowest_ones)
if get_low(reduced[:,k]) == get_low(reduced[:,col])
reduced[:,col] = rem.(reduced[:,col] + reduced[:,k], 2)
cycles[:,col] = rem.(cycles[:,col] + cycles[:,k], 2)
end
end
end
end
return reduced, cycles
end
Exemplo
using DelimitedFiles
boundary = readdlm("boundary.txt")
boundary
7×7 Array{Float64,2}:
0.0 0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
Calculando a matriz reduzida do bordo acima
@time reduced, cycles = reduce_matrix(boundary)
reduced
0.195500 seconds (198.82 k allocations: 8.872 MiB)
7×7 Array{Float64,2}:
0.0 0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
Outro exemplo (outro triângulo)
boundary_2 = readdlm("boundary_2.txt")
7×7 Array{Float64,2}:
0.0 0.0 0.0 1.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
reduced_2, cycles_2 = reduce_matrix(boundary_2)
reduced_2
7×7 Array{Float64,2}:
0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
cycles_2
7×7 Array{Float64,2}:
1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0
boundary_3 = readdlm("boundary_3.txt")
@time reduced_3, cycles_3 = reduce_matrix(boundary_3)
reduced_3
0.000078 seconds (310 allocations: 117.031 KiB)
13×13 Array{Float64,2}:
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Encontrando os diagramas de persistência
Pareamento
Vamos parear os simplexos em relação ao nascimento e morte de ciclo.
function simplex_pairing(reduced)
# primeiro vamos parear as colunas não nulas
pairs = []
nb_simplex = size(reduced)[1]
for j in 1:nb_simplex
temp = reduced[:,j]
if temp != zeros(nb_simplex)
lowest = get_low(temp)
pairs = [pairs; (lowest, j)]
end
end
# agora as colunas nulas que não foram pareadas são pareadas com o infinito
for j in 1:nb_simplex
if sum(j .== [pairs[i][2] for i in 1:length(pairs)]) == 0
if reduced[j] == 0 && sum(j .== [pairs[i][1] for i in 1:length(pairs)]) == 0
pairs = [pairs; (j, Inf)]
end
end
end
return pairs
end
Pareamento para as matrizes reduzidas que obtivemos antes
pairs_1 = simplex_pairing(reduced)
println(pairs_1)
pairs_2 = simplex_pairing(reduced_2)
println(pairs_2)
pairs_3 = simplex_pairing(reduced_3)
println(pairs_3)
Any[(2, 4), (3, 5), (6, 7), (1, Inf)]
Any[(2, 4), (3, 5), (6, 7), (1, Inf)]
Any[(2, 7), (6, 8), (5, 10), (4, 11), (12, 13), (1, Inf), (3, Inf), (9, Inf)]